dioxane-water ($65: 35, \mathrm{v} / \mathrm{v}$). A single development took about 6 h at 25°; multiple development, in this particular system, did not result in further resolution. Fig. I shows a photograph, taken under U.V. light, of the TLC of the $\mathrm{C}_{1}-\mathrm{C}_{14} n$-alkanal DNPH's using the technique described. We have observed that the best separation is achieved with the middle members of the $C_{1}-C_{14}$ series; the C_{1} and C_{2} derivatives tend to run together, and the C_{13} and C_{14} derivatives are often not well separated.

Although multiple development did not enhance resolution, we have used what we call "continuous development" to increase resolution. In this technique the derivatives are spotted into the impregnated plates, and the plates are developed with the dioxane-water system with $3-4 \mathrm{~cm}$ of the top of the plates exposed to the atmosphere. This is conveniently done in a Saran*-covered 1000 ml beaker, with a slit cut in the Saran film for the plate. Using this technique the slow and medium-mobility fractions are usually well resolved. Overdevelopment, however, can cause the "piling-up" of the fast-moving fractions at the top of the plate. Fig. 2 shows a plate that had been run with "continuous development".

Department of Food Science and Technology,
L. M. Libbey Oregon State University,
E. A. Day Corvallis, Oreg. (U.S.A.)
${ }^{1}$ G. Urbach, J. Chromatog., 12 (1963) 196.
${ }^{2}$ F. Kilein and Ki. de Jong, Rec. Tyav. Chim., 75 (1956) 1285.
Received September 12th, 1963

[^0]$$
\text { J. Chromatog., } 14(1964) 273-275
$$

Thin-layer chromatography of tetra- and pentacyclic triterpenes

Thin-layer chromatography has occasionally been applied to the separation of triterpenes, e.g. by Tschesche ${ }^{1,2}$ to those of Bredemeyera foribunda, by Thomas ${ }^{3}$ to those of Commiphora glandulosa and by Huneck ${ }^{4}$ to those of Sorbus torminalis.

In experiments with Tsraeli peat, which will be reported elsewhere, we have developed a system that proved useful in the separation of triterpenoid compounds and permitted their easy identification. The solvent mixture used was heptane-benzene-ethanol (50:50:0.5), applied to alumina G. This mixture has the advantage that an increase in the alcohol concentration increases and a decrease in its concentration decreases the rate of migration. For example, the R_{F} values for betulin (No. 3) are 0, 0.54, 0.73 for $0 \%, 0.5 \%$ and 2% alcohol, for lupeol (No. 10) 0.16, 0.37, 0.94 for the same three alcohol concentrations.

A systematic study has given the following results, which will be extended by further investigations: epi- β-Amyrin (No. 15) and epi-lupeol (I4) can be separated from their diastereoisomers β-amyrin (No. 6) and lupeol (10); the epi-compounds have higher R_{F} values.

Friedelin (19) can be easily separated from friedelan-3 β-ol (13), euphone (3x) from eupinol (24), allobetulone (I7) from allobetulin (II). In these cases, the ketones have higher R_{F} values than the corresponding secondary alcohols. Equally, the esters of alcohols have higher R_{F} values than the free alcohols.

In Tables I and II are listed the tetra- and pentacyclic triterpenes so far studied, together with their R_{F} values and the colours obtained by spraying with three reagents. For convenience, the structural formulae of the compounds investigated are given in Fig. I. In the tables, the compounds are arranged in the order of increasing R_{F}.

Fig. 1.
In the α-amyrin (I) series, the R_{F} value decreases with the increasing number of hydroxyl groups. This is also evident in other series, e.g. (V). For the β-amyrin (III) compounds, the double bond has a small, but significant effect. If $R=O H$, the R_{F}
TABLE I
pentacyclic triterpenes

No.	Compound	Structure	Substituents	R_{F}	SbCl_{3}	SbCl_{5}	$\mathrm{Ac}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{SO}_{4}$
1	Uvaol	I	$\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{CH}_{2} \mathrm{OH}, \mathrm{R}_{3}=\mathrm{H}$	0.03	Blue	Violet	Violet
2	Brein	I	$\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{CH}_{3}, \mathrm{R}_{3}=\mathrm{OH}$	0.04	Blue-yellow	Gray	Blue
3	Betulin	V	$\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{CH}_{2} \mathrm{OH}$	0.14	Violet	Pink	Violet
4	Taraxasterol	II		0.15	Violet-gray	Violet	Pink
5	Germanicol	III	$\mathrm{R}=\mathrm{OH}, 4 \mathrm{l} 8,19$	0.17	Violet	Violet	Pink
6	β-Amyrin	III	$\mathrm{R}=\mathrm{OH}, \mathrm{Ul}_{12,13}$	0.24	Brown-gray	Pink	Pink
7	α-Amyrin	1	$\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{CH}_{3}, \mathrm{R}_{3}=\mathrm{H}$	0.26	Brown-orange	Pink	Pink
8	Taraxcrol	III	$\mathrm{R}=\mathrm{OH}, \mathrm{AI}_{4,15}$	0.30	Gray	Violet	Pink
9	Dihydrotaraxerol	III	$\mathrm{R}=\mathrm{OH}$	0.35	Gray-violet	Brown	Pale brown
10	Lupeol	V	$\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{CH}_{3}$	0.37	Violet-orange	Violet	Violet
11	Allobetulin	IV	$\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{CH}_{2}$	0.38	Yellow	Brown	Yellow
12	Breindione	Ia		0.40	Brown	Yellow	Pink
13	Friedelan-3 β-ol	VI	$\mathrm{R}=\mathrm{OH}$	0.50	Violet	Violet	Pale brown
14	epi-Lupeol	V	$\mathrm{R}_{1}=\alpha \mathrm{OH}, \mathrm{R}_{2}=\mathrm{CH}_{3}$	0.52	Brown	Violet	Brown
15	epi- β-Amyrin	III	$\mathrm{R}=\alpha \mathrm{OH}, \Delta \mathrm{I} 2,13$	0.53	Brown-gray	Violet	Pale brown
16	Oxyallobetulin	IV	$\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=(\mathrm{C}=0)$	0.55	Pale brown	Brown	Yellow
17	Allobetulone	1Va		0.78	Pale brown	Brown	Yellow brown
18	β-Amyrin acetate	III	$\mathrm{R}=\mathrm{OAc}, \mathrm{Ul}_{12,13}$	0.87	Brown	Violet	Violet
19	Friedelin	VIa		0.85	Brown	Brown	Pale brown
20	epi-Friedelanyl acetate	VI	$\mathrm{R}=\mathrm{OAc}$	0.89	Violet	Brown	Pale brown
21	Taraxeryl acetate	III	$\mathrm{R}=$ OAc, $\mathrm{Ul}_{14,15}$	0.91	Gray	Violet	Violet
22	Allobetulin acetate	IV	$\mathrm{R}_{1}=\mathrm{OAc}, \mathrm{R}_{2}=\mathrm{CH}_{2}$	0.91	Violet	Brown	Pale brown
23	β-Amyrin benzoate	111	$\mathrm{R}=\mathrm{OBz}, \Delta \mathrm{L} 2,13$	0.92	Brown-orange	Violet	Brown

table II
tetracyclic triterpenes

No.	Compound	Stncture	Substitucnts	R_{F}	SbCl_{3}	SbCl_{5}	$\mathrm{Ac}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{SO}$
24	Euphol	VII	$\mathrm{R}=\mathrm{OH}, \Delta 8,9, \Delta 24,25$	0.20	Brown	Brown	Violet-gray
25	Parkeol	VII	$\mathrm{R}=\mathrm{OH}, \Delta 9,11, \Delta 24,25$	0.20	Brown	Brown	Violet-gray
26	Cyclolaudenol	1X	$\mathrm{R}=\mathrm{OH}$	0.21	Gray	Brown	Violet-gray
27	Butyrospermol	VII	$\mathrm{R}=\mathrm{OH}, \Delta 7,8, \Delta \mathbf{4}_{4,25}$	0.22	Yellow	Violet	,
28	α-Euphorbol	X	$\mathrm{R}=\mathrm{OH}, \Delta 8,9$	0.24	Brown-gray	Red	Violet
29	Lanosterol	VIII	$\mathrm{R}=\mathrm{OH}, \Delta 8,9, \Delta 24,25$	0.33	Yellow	Brown	Violet
30	Cycloartenone	IXa		0.67	Yellow	Brown	Brown
31	Euphone	VIIa		0.73	Yellow	Yellow-brown	Brown
32	Butyrospermone	VII	$\mathrm{R}=\mathrm{C}=0, \Delta_{7}, 8, \Delta_{24,25}$	0.78	Yellow	Brown	Gray
33	Agnosterol	VIII	$\mathbf{R}=\mathbf{O H}, \Delta 6,7, \Delta 9,11, \Delta \mathbf{2 4 , 2 5}$	0.88	Yellow	Yellow	Brown-yellow
34	Dihydrobutyrospermyl acetate	VII	$\mathbf{R}=\mathrm{OAc}, \Delta 7,8$	0.90	Gray	Red	Violet
35	Euphene	VIIa	$=\mathrm{CH}_{2}$ instead of $\mathrm{C}=0$	0.96	Brown	Gray-brown	Brown-yellow

value increases when the double bond is transposed from the 18 , 19 (No. 5) wia the 12 , I3 (No. 6) to the I4, I5 position (No. 8). The R_{F} value for the saturated analogue (No.9) is still higher. This appears to indicate that in the three unsaturated substances the double bonds become less polar or less important for adsorption in the sequence given.

In the tetracyclic series, (VII) has almost the same R_{F} value, whether the clouble bonds are in the 24,25 and the 8,9 positions (No. 24), in the 24,25 and the 7,8 positions (No. 27) or in the 24, 25 and the 9, II positions (No. 25).

It is somewhat surprising on the other hand that in the lanosterol series (VIII), three double bonds (No. 33) make the compound migrate more quickly than two (No. 25, 26).

Undoubtedly, a more complete study of this class of compounds will reveal the inherent regularities more clearly.

Experimental procedure

For the preparation of 5 glass plates ($20 \times 20 \mathrm{~cm}$) a mixture of 50 g of alumina G (Merck) and 100 ml of distilled water was used. The well-shaken mixture was applied to a thickness of 0.25 mm with a Desaga apparatus. After i hat room temperature, the plates were dried for 30 min at 125° and kept in a desiccator.

The base line was fixed at a distance of 3 cm from the rim of the plate and the compounds were applied in chloroform solution by means of a micro-pipette. The distance between samples on the same plate was about 2 cm .

The development of the chromatogram with the above-mentioned mixture was carried out in one dimension, at 23°. Within $I \mathrm{~h}$, the solvent rose a distance of I 2 cm . At the end of the development, the height to which the liquid rose was noted; after a further 10 min at room temperature, the plates were dried for 5 min at 120°.

The triterpenes were detected by spraying with three reagents: (A) antimony trichloride, 20% in chloroform, (B) antimony pentachloricle, 20% in chloroform, (C) acetic anhydride (10%) and sulphuric acid (10%) in absolute alcohol.

After spraying, the plates were dried at 120° for 5 min .

Acknowoledgements

The authors wish to thank Drs. J. McLean and W. Lawrie of the Royal College of Science and Technology, Glasgow, for samples of the triterpenes.

Department of Organic Chemistry, Hebrezo University, R. Iman Jerusalem (Israel)
J. Kashman
E. D. Bergmann

1 12. Tschesche, F. Lambert and G. Snatzee, J. Chromatog., 5 (196i) 217.
${ }^{2}$ R. Tschesche and A. K. Sen Gupta, Ber., 93 (1960) 1903.
${ }^{3}$ A. F. Thomas and I. M. Muller, Experientia, ig (1960) 62.
${ }^{4}$ S. Huneck, J. Chromatog., 7 (1962) 561.
Received August 27th, r963

[^0]: * Soran is a trade name for polyvinylidene chloride.

